Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Mem Inst Oswaldo Cruz ; 118: e220251, 2023.
Article in English | MEDLINE | ID: covidwho-2255637

ABSTRACT

Meningitis is a potentially life-threatening infection characterised by the inflammation of the leptomeningeal membranes. The estimated annual prevalence of 8.7 million cases globally and the disease is caused by many different viral, bacterial, and fungal pathogens. Although several genera of fungi are capable of causing infections in the central nervous system (CNS), the most significant number of registered cases have, as causal agents, yeasts of the genus Cryptococcus. The relevance of cryptococcal meningitis has changed in the last decades, mainly due to the increase in the number of people living with human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) and medications that impair the immune responses. In this context, coronavirus disease 19 (COVID-19) has also emerged as a risk factor for invasive fungal infections (IFI), including fungal meningitis (FM), due to severe COVID-19 disease is associated with increased pro-inflammatory cytokines, interleukin (IL)-1, IL-6, and tumour necrosis factor-alpha, reduced CD4-interferon-gamma expression, CD4 and CD8 T cells. The gold standard technique for fungal identification is isolating fungi in the culture of the biological material, including cerebrospinal fluid (CSF). However, this methodology has as its main disadvantage the slow or null growth of some fungal species in culture, which makes it difficult to finalise the diagnosis. In conclusions, this article, in the first place, point that it is necessary to accurately identify the etiological agent in order to assist in the choice of the therapeutic regimen for the patients, including the implementation of actions that promote the reduction of the incidence, lethality, and fungal morbidity, which includes what is healthy in the CNS.


Subject(s)
COVID-19 , Cryptococcus , HIV Infections , Meningitis, Cryptococcal , Humans , Inflammation , Risk Factors , HIV Infections/complications
2.
Immunobiology ; 227(6): 152288, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2105124

ABSTRACT

The clinical presentation of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), ranges between mild respiratory symptoms and a severe disease that shares many of the features of sepsis. Sepsis is a deregulated response to infection that causes life-threatening organ failure. During sepsis, the intestinal epithelial cells are affected, causing an increase in intestinal permeability and allowing microbial translocation from the intestine to the circulation, which exacerbates the inflammatory response. Here we studied patients with moderate, severe and critical COVID-19 by measuring a panel of molecules representative of the innate and adaptive immune responses to SARS-CoV-2, which also reflect the presence of systemic inflammation and the state of the intestinal barrier. We found that non-surviving COVID-19 patients had higher levels of low-affinity anti-RBD IgA antibodies than surviving patients, which may be a response to increased microbial translocation. We identified sFas and granulysin, in addition to IL-6 and IL-10, as possible early biomarkers with high sensitivity (>73 %) and specificity (>51 %) to discriminate between surviving and non-surviving COVID-19 patients. Finally, we found that the microbial metabolite d-lactate and the tight junction regulator zonulin were increased in the serum of patients with severe COVID-19 and in COVID-19 patients with secondary infections, suggesting that increased intestinal permeability may be a source of secondary infections in these patients. COVID-19 patients with secondary infections had higher disease severity and mortality than patients without these infections, indicating that intestinal permeability markers could provide complementary information to the serum cytokines for the early identification of COVID-19 patients with a high risk of a fatal outcome.


Subject(s)
COVID-19 , Coinfection , Sepsis , Humans , COVID-19/diagnosis , SARS-CoV-2 , Interleukin-6 , Interleukin-10 , Permeability , Biomarkers , Intestines
4.
Immunobiology ; 2022.
Article in English | EuropePMC | ID: covidwho-2045698

ABSTRACT

The clinical presentation of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), ranges between mild respiratory symptoms and a severe disease that shares many of the features of sepsis. Sepsis is a deregulated response to infection that causes life-threatening organ failure. During sepsis, the intestinal epithelial cells are affected, causing an increase in intestinal permeability and allowing microbial translocation from the intestine to the circulation, which exacerbates the inflammatory response. Here we studied patients with moderate, severe and critical COVID-19 by measuring a panel of molecules representative of the innate and adaptive immune responses to SARS-CoV-2, which also reflect the presence of systemic inflammation and the state of the intestinal barrier. We found that non-surviving COVID-19 patients had higher levels of low-affinity anti-RBD IgA antibodies than surviving patients, which may be a response to increased microbial translocation. We identified sFas and granulysin, in addition to IL-6 and IL-10, as possible early biomarkers with high sensitivity (>73%) and specificity (>51%) to discriminate between surviving and non-surviving COVID-19 patients. Finally, we found that the microbial metabolite D-lactate and the tight junction regulator zonulin were increased in the serum of patients with severe COVID-19 and in COVID-19 patients with secondary infections, suggesting that increased intestinal permeability may be a source of secondary infections in these patients. COVID-19 patients with secondary infections had higher disease severity and mortality than patients without these infections, indicating that intestinal permeability markers could provide complementary information to the serum cytokines for the early identification of COVID-19 patients with a high risk of a fatal outcome.

5.
Front Public Health ; 9: 735624, 2021.
Article in English | MEDLINE | ID: covidwho-1775875

ABSTRACT

Background: Lifestyle Medicine (LM) aims to address six main behavioral domains: diet/nutrition, substance use (SU), physical activity (PA), social relationships, stress management, and sleep. Digital Health Interventions (DHIs) have been used to improve these domains. However, there is no consensus on how to measure lifestyle and its intermediate outcomes aside from measuring each behavior separately. We aimed to describe (1) the most frequent lifestyle domains addressed by DHIs, (2) the most frequent outcomes used to measure lifestyle changes, and (3) the most frequent DHI delivery methods. Methods: We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA-ScR) Extension for Scoping Reviews. A literature search was conducted using MEDLINE, Cochrane Library, EMBASE, and Web of Science for publications since 2010. We included systematic reviews and meta-analyses of clinical trials using DHI to promote health, behavioral, or lifestyle change. Results: Overall, 954 records were identified, and 72 systematic reviews were included. Of those, 35 conducted meta-analyses, 58 addressed diet/nutrition, and 60 focused on PA. Only one systematic review evaluated all six lifestyle domains simultaneously; 1 systematic review evaluated five lifestyle domains; 5 systematic reviews evaluated 4 lifestyle domains; 14 systematic reviews evaluated 3 lifestyle domains; and the remaining 52 systematic reviews evaluated only one or two domains. The most frequently evaluated domains were diet/nutrition and PA. The most frequent DHI delivery methods were smartphone apps and websites. Discussion: The concept of lifestyle is still unclear and fragmented, making it hard to evaluate the complex interconnections of unhealthy behaviors, and their impact on health. Clarifying this concept, refining its operationalization, and defining the reporting guidelines should be considered as the current research priorities. DHIs have the potential to improve lifestyle at primary, secondary, and tertiary levels of prevention-but most of them are targeting clinical populations. Although important advances have been made to evaluate DHIs, some of their characteristics, such as the rate at which they become obsolete, will require innovative research designs to evaluate long-term outcomes in health.


Subject(s)
Health Promotion , Exercise , Humans , Life Style , Sleep
8.
J Leukoc Biol ; 110(3): 425-431, 2021 09.
Article in English | MEDLINE | ID: covidwho-1375609

ABSTRACT

The immune response plays a critical role in the pathophysiology of SARS-CoV-2 infection ranging from protection to tissue damage and all occur in the development of acute respiratory distress syndrome (ARDS). ARDS patients display elevated levels of inflammatory cytokines and innate immune cells, and T and B cell lymphocytes have been implicated in this dysregulated immune response. Mast cells are abundant resident cells of the respiratory tract and are able to release different inflammatory mediators rapidly following stimulation. Recently, mast cells have been associated with tissue damage during viral infections, but their role in SARS-CoV-2 infection remains unclear. In this study, we examined the profile of mast cell activation markers in the serum of COVID-19 patients. We noticed that SARS-CoV-2-infected patients showed increased carboxypeptidase A3 (CPA3) and decreased serotonin levels in their serum when compared with symptomatic SARS-CoV-2-negative patients. CPA3 levels correlated with C-reactive protein, the number of circulating neutrophils, and quick SOFA. CPA3 in serum was a good biomarker for identifying severe COVID-19 patients, whereas serotonin was a good predictor of SARS-CoV-2 infection. In summary, our results show that serum CPA3 and serotonin levels are relevant biomarkers during SARS-CoV-2 infection. This suggests that mast cells and basophils are relevant players in the inflammatory response in COVID-19 and may represent targets for therapeutic intervention.


Subject(s)
COVID-19/diagnosis , Carboxypeptidases A/metabolism , Inflammation Mediators/metabolism , Inflammation/diagnosis , Mast Cells/immunology , SARS-CoV-2/isolation & purification , Serotonin/metabolism , Biomarkers/analysis , COVID-19/complications , COVID-19/metabolism , COVID-19/virology , Humans , Inflammation/etiology , Inflammation/metabolism , Inflammation/pathology , Mast Cells/pathology , Severity of Illness Index
9.
Braz. j. infect. dis ; 24(2):180-187, 2020.
Article in English | LILACS (Americas) | ID: grc-742249

ABSTRACT

ABSTRACT The accuracy of commercially available tests for COVID-19 in Brazil remains unclear. We aimed to perform a meta-analysis to describe the accuracy of available tests to detect COVID-19 in Brazil. We searched at the Brazilian Health Regulatory Agency (ANVISA) online platform to describe the pooled sensitivity (Se), specificity (Sp), diagnostic odds ratio (DOR) and summary receiver operating characteristic curves (SROC) for detection of IgM/IgG antibodies and for tests using naso/oropharyngeal swabs in the random-effects models. We identified 16 tests registered, mostly rapid-tests. Pooled diagnostic accuracy measures [95%CI] were: (i) for IgM antibodies Se = 82% [76-87];Sp = 97% [96-98];DOR = 168 [92-305] and SROC = 0.98 [0.96-0.99];(ii) for IgG antibodies Se = 97% [90-99];Sp = 98% [97-99];DOR = 1994 [385-10334] and SROC = 0.99 [0.98-1.00];and (iii) for detection of SARS-CoV-2 by antigen or molecular assays in naso/oropharyngeal swabs Se = 97% [85-99];Sp = 99% [77-100];DOR = 2649 [30-233056] and SROC = 0.99 [0.98-1.00]. These tests can be helpful for emergency testing during the COVID-19 pandemic in Brazil. However, it is important to highlight the high rate of false negative results from tests which detect SARS-CoV-2 IgM antibodies in the initial course of the disease and the scarce evidence-based validation results published in Brazil. Future studies addressing the diagnostic performance of tests for COVID-19 in the Brazilian population are urgently needed.

10.
Braz J Infect Dis ; 24(2): 180-187, 2020.
Article in English | MEDLINE | ID: covidwho-72400

ABSTRACT

The accuracy of commercially available tests for COVID-19 in Brazil remains unclear. We aimed to perform a meta-analysis to describe the accuracy of available tests to detect COVID-19 in Brazil. We searched at the Brazilian Health Regulatory Agency (ANVISA) online platform to describe the pooled sensitivity (Se), specificity (Sp), diagnostic odds ratio (DOR) and summary receiver operating characteristic curves (SROC) for detection of IgM/IgG antibodies and for tests using naso/oropharyngeal swabs in the random-effects models. We identified 16 tests registered, mostly rapid-tests. Pooled diagnostic accuracy measures [95%CI] were: (i) for IgM antibodies Se=82% [76-87]; Sp=97% [96-98]; DOR=168 [92-305] and SROC=0.98 [0.96-0.99]; (ii) for IgG antibodies Se=97% [90-99]; Sp=98% [97-99]; DOR=1994 [385-10334] and SROC=0.99 [0.98-1.00]; and (iii) for detection of SARS-CoV-2 by antigen or molecular assays in naso/oropharyngeal swabs Se=97% [85-99]; Sp=99% [77-100]; DOR=2649 [30-233056] and SROC=0.99 [0.98-1.00]. These tests can be helpful for emergency testing during the COVID-19 pandemic in Brazil. However, it is important to highlight the high rate of false negative results from tests which detect SARS-CoV-2 IgM antibodies in the initial course of the disease and the scarce evidence-based validation results published in Brazil. Future studies addressing the diagnostic performance of tests for COVID-19 in the Brazilian population are urgently needed.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/immunology , Clinical Laboratory Techniques/standards , Coronavirus Infections/diagnosis , Immunoglobulin G/blood , Immunoglobulin M/blood , Pneumonia, Viral/diagnosis , Betacoronavirus/isolation & purification , Brazil/epidemiology , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/methods , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Humans , Logistic Models , Nasopharynx/virology , Odds Ratio , Oropharynx/virology , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , ROC Curve , SARS-CoV-2 , Sensitivity and Specificity
12.
Non-conventional | WHO COVID | ID: covidwho-663083

ABSTRACT

ABSTRACT Covid-19 is a global threat that attracts researchers from all areas to understand the natural history of the disease and its epidemiological parameters. The technological development of vaccines, diagnostic tests, and therapeutic targets has mobilized many resources in a short time. Health technology assessment (HTA), based on a systematic analysis of the properties, effects and/or impacts of health technologies through internationally-validated methods and instruments to assess the quality and methodological rigor of studies that demonstrate effectiveness, efficacy, and safety, is under unprecedented pressure due to the pandemic. This article also reflects on the emergency authorization of the use of treatments and diagnostic tests that conflict with HTA precepts. We will also evaluate non-pharmacological technologies of containment of the disease and their impacts on the domestic and international economy, as well as the judicial interventions that impact the decisions of managers in the exceptional context of the covid-19 pandemic.

SELECTION OF CITATIONS
SEARCH DETAIL